An endogenous suppressor of hairy-wing insulator separates regulatory domains in Drosophila.

نویسندگان

  • Timothy J Parnell
  • Michaela M Viering
  • Astrid Skjesol
  • Cecilia Helou
  • Emily J Kuhn
  • Pamela K Geyer
چکیده

Insulators define independent domains of gene function throughout the genome. The Drosophila gypsy insulator was isolated from the gypsy retrotransposon as a region that contains a cluster of binding sites for the Suppressor of Hairy-wing [Su(Hw)] protein. To study the effects of the gypsy insulator on gene expression within a single genomic domain, targeted gene replacement was used to exchange the endogenous yellow gene, located at cytological location 1A, with a set of gypsy-modified yellow genes. Replaced yellow genes carried a gypsy insulator positioned between the yellow promoter and either the upstream or the downstream tissue-specific enhancers. Whereas the gypsy insulator blocked the function of the upstream enhancers at the endogenous location, the downstream enhancers were not blocked. Investigation of the 1A region revealed two clustered Su(Hw)-binding sites downstream of the yellow gene, named 1A-2, that bind Su(Hw) in vivo and possess enhancer blocking function. We propose that interaction between 1A-2 and the gypsy insulator permits activation of yellow expression by enhancers in the neighboring achaete-scute complex, causing an apparent absence of the block of the downstream yellow enhancers. Based on these data, we suggest that 1A-2 is an endogenous Su(Hw) insulator that separates regulatory domains within the Drosophila genome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An endogenous Su(Hw) insulator separates the yellow gene from the Achaete-scute gene complex in Drosophila.

The best characterized chromatin insulator in Drosophila is the Suppressor of Hairy wing binding region contained within the gypsy retrotransposon. Although cellular functions have been suggested, no role has been found yet for the multitude of endogenous Suppressor of Hairy wing binding sites. Here we show that two Suppressor of Hairy wing binding sites in the intergenic region between the yel...

متن کامل

Investigation of the properties of non-gypsy suppressor of hairy-wing-binding sites.

Insulators define interactions between transcriptional control elements in eukaryotic genomes. The gypsy insulator found in the gypsy retrovirus binds the zinc-finger Suppressor of Hairy-wing [Su(Hw)] protein that associates with hundreds of non-gypsy regions throughout the Drosophila genome. Models of insulator function predict that the gypsy insulator forms chromatin loop domains through inte...

متن کامل

The insulator protein Suppressor of Hairy-wing is an essential transcriptional repressor in the Drosophila ovary.

Suppressor of Hairy-wing [Su(Hw)] is a DNA-binding factor required for gypsy insulator function and female germline development in Drosophila. The insulator function of the gypsy retrotransposon depends on Su(Hw) binding to clustered Su(Hw) binding sites (SBSs) and recruitment of the insulator proteins Centrosomal Protein 190 kD (CP190) and Modifier of mdg4 67.2 kD (Mod67.2). By contrast, the S...

متن کامل

Drosophila CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains.

Several multiprotein DNA complexes capable of insulator activity have been identified in Drosophila melanogaster, yet only CTCF, a highly conserved zinc finger protein, and the transcription factor TFIIIC have been shown to function in mammals. CTCF is involved in diverse nuclear activities, and recent studies suggest that the proteins with which it associates and the DNA sequences that it targ...

متن کامل

Context Differences Reveal Insulator and Activator Functions of a Su(Hw) Binding Region

Insulators are DNA elements that divide chromosomes into independent transcriptional domains. The Drosophila genome contains hundreds of binding sites for the Suppressor of Hairy-wing [Su(Hw)] insulator protein, corresponding to locations of the retroviral gypsy insulator and non-gypsy binding regions (BRs). The first non-gypsy BR identified, 1A-2, resides in cytological region 1A. Using a quan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 23  شماره 

صفحات  -

تاریخ انتشار 2003